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Abstract
We extend our method of partner symmetries to the hyperbolic complex Monge-
Ampère equation and the second heavenly equation of Plebañski. We show
the existence of partner symmetries and derive the relations between them.
For certain simple choices of partner symmetries the resulting differential
constraints together with the original heavenly equations are transformed
to systems of linear equations by an appropriate Legendre transformation.
The solutions of these linear equations are generically non-invariant. As a
consequence we obtain explicitly new classes of heavenly metrics without
Killing vectors.

PACS numbers: 04.20.Jb, 02.40.Ky
Mathematics Subject Classification: 35Q75, 83C15

1. Introduction

After advances in twistor theory it became natural to consider Ricci-flat metrics on four-
dimensional complex manifolds. In his pioneering paper [1] Plebañski introduced his first
and second heavenly equations for a single potential governing such metrics. From solutions
of these equations we obtain the corresponding heavenly metrics which give solutions of
the complex vacuum Einstein equations possessing the property of (anti-)self-duality. The
problem here is to reduce these solutions to four-dimensional real metrics with Lorentzian
signature. There are two important real cross sections of the complex metrics governed by the
first heavenly equation, namely Kähler metrics with Euclidean or ultra-hyperbolic signature.
The first heavenly equation in these cases coincides with the elliptic and hyperbolic complex
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Monge–Ampère equation (CMA) respectively which have applications to important problems
in physics and geometry. In particular, for the elliptic case of the CMA some solutions can
be interpreted as gravitational instantons. The most important gravitational instanton is the
Kummer surface K3 [2]. The explicit construction of the K3 metric is a challenging problem.
One of the basic difficulties is that the metric should have no Killing vectors and hence
the corresponding solution of the CMA should have no symmetries, i.e. be a non-invariant
solution.

This was our motivation to study the problem of constructing non-invariant solutions
of complex Monge-Ampère equations. In the elliptic case we have recently developed the
method of partner symmetries appropriate for this problem and obtained certain classes of non-
invariant solutions of the CMA and corresponding heavenly metrics with no Killing vectors
[3, 4]. The starting point of the method was the observation that the determining equation
for symmetries of the elliptic CMA can be presented in the form of a total divergence. This
allowed us to introduce locally a potential variable, and another key observation was that the
potential again satisfied the same determining equation, i.e. also was a symmetry. We called
such a pair of an original symmetry and its potential partner symmetries. The equations
relating partner symmetries are therefore recursion relations mapping any symmetry again
into a symmetry of the CMA but the corresponding recursion operator is non-local. Thus if
we apply it to a local symmetry then a non-local symmetry will be generated. To avoid the
explicit use of non-local symmetries, we consider both partner symmetries as local symmetries
and the relation between them as an invariance condition with respect to a certain resulting
non-local symmetry which we never explicitly put into play. Hence the resulting solutions,
though invariant with respect to some non-local symmetry, will be non-invariant solutions in
the usual sense and hence generate metrics without Killing vectors. This is closely related to
the approach of Dunajski and Mason [5] though their ‘hidden’ symmetries belong to a more
special class of non-local symmetries than those constructed from the partner symmetries.

For any particular choice of partner symmetries the relations between them become
differential constraints compatible with the original CMA equation. We discovered certain
useful choices of partner symmetries when the CMA together with the differential constraints
could be linearized by a Legendre transformation. Solving linear equations and using their
solutions in the Legendre transform of the metric we obtained explicitly some classes of
Riemannian metrics with Euclidean signature and anti-self-dual curvature that did not admit
any Killing vectors. It is worth noting that linearization of particular solution manifolds of
PDEs by the Legendre transformation was suggested in [6].

In this paper we extend our method of partner symmetries to two more four-dimensional
heavenly equations: the hyperbolic complex Monge–Ampère equation (HCMA), which is
another interesting real cross section of the first heavenly equation, and the second heavenly
equation of Plebañski. Our method of partner symmetries works because determining
equations for symmetries of all these heavenly equations have the structure of total divergence,
and the potential for a symmetry is itself a symmetry. Therefore we again have pairs of partner
symmetries for all these heavenly equations. We find such choices of partner symmetries when
the original heavenly equation together with differential constraints arising from relations
between partner symmetries can be linearized by the Legendre transformation. We present
solutions of linear equations and the corresponding metrics without Killing vectors.

We study the hyperbolic complex Monge–Ampère equation in the first part of the paper
and the second heavenly equation in the second part.

In section 2, for the sake of completeness, we show that if the Kähler potential satisfies the
HCMA the corresponding Kähler metric has ultra-hyperbolic signature. In section 3 we derive
the relations defining partner symmetries from divergence structure of the determining equation
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for symmetries of the HCMA and make our choices of partner symmetries. In section 4
we consider the partial Legendre transformation of the HCMA and the relations between
partner symmetries in the case when both partner symmetries coincide. We also obtain the
Legendre transform of the Kähler metric. Making further choices of partner symmetries as
translational or dilatational symmetry, we arrive at systems of linear PDEs for which we obtain
explicitly non-invariant solutions. Using them in the Legendre transformed metric we obtain
explicit four-dimensional metrics without Killing vectors which is justified in section 7.

In section 5 we consider the second heavenly equation with the corresponding heavenly
metrics. In section 5.1 we show the existence of partner symmetries and derive the relations
defining them from the divergence structure of the determining equation for symmetries. In
section 5.2 we present explicitly basis generators of the total Lie algebra of point symmetries
of the second heavenly equation and the table of its commutation relations. The Legendre
transform of the second heavenly metric is given in section 5.3. In section 6 we consider
two simple choices of partner symmetries. In section 6.1 we discuss the subcase when both
of them coincide with the same translational symmetry. The Legendre transformation of
the heavenly equation and differential constraints arising from this choice convert them to a
system of linear equations which is easily solved. In section 6.2 we choose one of the partner
symmetries to be translational symmetry and the characteristic of the other one is set equal to
zero. The same Legendre transformation gives us again a linear system which is easily solved.
In the generic case all these solutions are non-invariant and the corresponding metrics have no
Killing vectors.

In section 7 we analyse the Killing equations for both the Kähler and the second heavenly
metrics. We find a first integral of the Killing equations which is a first-order PDE for the
metric potential that contains all the information in Killing’s equations. We show that for
our solutions this existence condition for the Killing vector cannot be satisfied as it implies
functional dependence between independent variables.

2. Hyperbolic complex Monge–Ampère equation and ultra-hyperbolic metrics

In the famous paper of Plebañski [1], the Einstein vacuum equations in the complex four-
dimensional Riemannian space together with the constraint of (anti-)self-duality are reduced
to the general complex Monge–Ampère equation∣∣∣∣�pr �ps

�qr �qs

∣∣∣∣ = 1 (2.1)

governing the metric

ds2 = �pr dp dr + �ps dp ds + �qr dq dr + �qs dq ds (2.2)

where the ‘key function’ � is a complex-valued function of the complex variables p, q, r, s

and we skip the overall constant factor 2.
To restrict this general result to physically interesting cases, we require that � = u where

u is a real-valued function and the independent variables form two pairs of complex conjugate
variables: p = z1, q = z2, r = εz̄1, s = z̄2 with ε = ±1. Then the field equation (2.1) takes
the form

u11̄u22̄ − u12̄u21̄ = ε (2.3)

and the metric (2.2) becomes

ds2 = u11̄ dz1 dz̄1 + u12̄ dz1 dz̄2 + u21̄ dz2 dz̄1 + u22̄ dz2 dz̄2 (2.4)

where the subscripts i, j̄ denote partial derivatives with respect to zi and z̄j , respectively.
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To determine the signature of the resulting metric (2.4) and its dependence on ε, we
use the tetrad of the Newman–Penrose co-frame {l, l̄, m, m̄} [7, 8] corresponding to the
metric (2.4)

l = 1√
u11̄

(u1̄1 dz1 + u1̄2 dz2) m = 1√
u11̄

dz2 (2.5)

with l̄ and m̄ being complex conjugate to l and m. Then using the field equation (2.3) in the
form

u12̄u1̄2

u11̄
= u22̄ − ε

u11̄

we check that the metric

ds2 = l ⊗ l̄ + εm ⊗ m̄ (2.6)

coincides with (2.4). The form (2.6) implies that the metric (2.4) is Euclidean with the
signature (+ + ++) for ε = 1 and it is ultra-hyperbolic with the signature (+ +−−) for ε = −1.
The difference comes solely from the dependence of the field equation (2.3) on ε whereas the
metric has the same form (2.4) in both cases.

In the first part of this paper we shall be interested in the ultra-hyperbolic metric (2.4)
governed by the hyperbolic complex Monge–Ampère equation

u11̄u22̄ − u12̄u21̄ = −1 (2.7)

i.e. (2.3) with ε = −1.
The relation between ultra-hyperbolic metrics and the HCMA was demonstrated by a

different method in [9].

3. Partner symmetries of the hyperbolic complex Monge–Ampère equation

The determining equation for symmetries of the HCMA is the same as for the elliptic CMA
(2.3) with ε = 1 [3]

�(ϕ) = 0 � = u22̄D1D1̄ + u11̄D2D2̄ − u21̄D1D2̄ − u12̄D2D1̄ (3.1)

where ϕ denotes the symmetry characteristic [11] and Di,Dī are operators of total derivatives
with respect to zi, z̄i respectively. Our starting point is the divergence form of this equation

D1L2ϕ = D2L1ϕ (3.2)

where

L1 = i(u12̄D1̄ − u11̄D2̄) L2 = i(u22̄D1̄ − u21̄D2̄). (3.3)

Hence there locally exists the potential ψ such that

ψ1 = L1ϕ = i(u12̄ϕ1̄ − u11̄ϕ2̄) and ψ2 = L2ϕ = i(u22̄ϕ1̄ − u21̄ϕ2̄). (3.4)

Using this definition of ψ and the HCMA, a straightforward check shows that �(ψ) = 0 and
thus ψ is also a symmetry characteristic of the HCMA together with ϕ. Thus equations (3.4)
are recursion relations for symmetries of the HCMA.

We have called such a pair of mutually related symmetry characteristics partner
symmetries [3]. Formulae (3.4) can be presented in the form

ψ = Rϕ = D−1
1 L1ϕ ψ = Rϕ = D−1

2 L2ϕ (3.5)

where R is the recursion operator defined on the subspace of partner symmetries.
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Solving algebraically the equations complex conjugate to (3.4) with respect to ϕ1, ϕ2 and
using (2.7) we obtain

ϕ1 = L1ψ = i(u12̄ψ1̄ − u11̄ψ2̄) and ϕ2 = L2ψ = i(u22̄ψ1̄ − u21̄ψ2̄) (3.6)

so that ϕ is expressed through ψ exactly in the same way as ψ is expressed through ϕ in
(3.4). This is the basic difference with the elliptic CMA for which we had an extra minus sign:
ϕ1 = −L1ψ, ϕ2 = −L2ψ .

The HCMA itself emerges now as an algebraic consequence of any three equations of the
system (3.4), (3.6) on account of the complex conjugate equations.

We will avoid operating explicitly with non-local symmetries and use instead
equations (3.6) only with the point symmetries ϕ and ψ . Then these equations are equivalent
to an invariance condition for solutions of the HCMA with respect to a non-local symmetry
which is a linear combination of ψ and the non-local symmetry generated from ϕ by the
recursion operator. Such solutions will still be non-invariant in the usual sense.

We shall choose ϕ and ψ as characteristics of point symmetries of the HCMA. A general
form of the generators of point symmetries of the HCMA is obviously the same as for the
elliptic CMA obtained in [10]

X = i(�1∂2 − �2∂1 − �1̄∂2̄ + �2̄∂1̄) + C1(z
1∂1 + z̄1∂1̄ + u∂u) + iC2(z

2∂2 − z̄2∂2̄) + H∂u

(3.7)

where C1 and C2 are real constants and �(zi, z̄k) and H(zi, z̄k) are arbitrary solutions of the
linear system

�11̄ = 0 �22̄ = 0 �12̄ = 0 �21̄ = 0

so that � = ω(zi) + ω̄(z̄i) and H = h(zi) + h̄(z̄i). The corresponding symmetry characteristic
[11] has the form

η̂ = i(u1�2 −u2�1 + u2̄�1̄ − u1̄�2̄) + C1(u− z1u1 − z̄1u1̄)− iC2(z
2u2 − z̄2u2̄) + H. (3.8)

Symmetries ϕ and ψ can be chosen as special cases of expression (3.8).
In this paper we shall restrict ourselves only to the case ψ = ϕ with the following two

particular choices of partner symmetries: combined translational symmetries in z1, z̄1 and u

ψ = ϕ = u1 + u1̄ + h(z2) + h̄(z̄2) (3.9)

and dilatational symmetries in the same variables

ψ = ϕ = u − z1u1 − z̄1u1̄. (3.10)

4. Legendre transform of partner symmetries and ultra-hyperbolic metrics

Let us perform the Legendre transformation of equations (2.7) and (3.4) to new variables

v = u − z1u1 − z̄1u1̄ p = u1 p̄ = u1̄ z1 = −vp z̄1 = −vp̄ (4.1)

where v = v(p, p̄, z2, z̄2). Then equation (2.7) in the new variables becomes

vpp̄v22̄ − vp2̄vp̄2 = v2
pp̄ − vppvp̄p̄ (4.2)

and equations (3.4) together with their complex conjugates take the form

ϕpvp̄p̄ − iϕ2̄vpp̄ − ϕp̄(vpp̄ − ivp2̄) = 0

ϕp̄vpp + iϕ2vpp̄ − ϕp(vpp̄ + ivp̄2) = 0
(4.3)

ϕpϕp̄(2vpp̄ − v22̄) − (
ϕ2

p̄ + iϕp̄ϕ2̄

)
vpp − (

ϕ2
p − iϕpϕ2

)
vp̄p̄

+ (ϕ2ϕ2̄ + iϕ2̄ϕp − iϕ2ϕp̄)vpp̄ = 0
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the last equation coinciding with its complex conjugate. Here we keep the same notation ϕ

for the Legendre transform of the symmetry characteristic which now depends on p, p̄ instead
of z1, z̄1.

Ultra-hyperbolic metric (2.4) governed by the field equation (2.7) after Legendre
transformation (4.1) becomes

ds2 = 1(
vppvp̄p̄ − v2

pp̄

)[
vpp(vpp̄ dp + vp̄2 dz2)2 + vp̄p̄(vpp̄ dp̄ + vp2̄ dz̄2)2

+

(
vppvp̄p̄ + v2

pp̄

)
vpp̄

|vpp̄ dp + vp̄2 dz2|2
]

−
(
vppvp̄p̄ − v2

pp̄

)
vpp̄

dz2 dz̄2 (4.4)

where we have used the Legendre transform (4.2) of the HCMA in the last term.
The Legendre transforms of translational and dilatational symmetries (3.9) and (3.10)

become respectively

ψ = ϕ = p + p̄ + h(z2) + h̄(z̄2) (4.5)

and

ψ = ϕ = v. (4.6)

With the choice (4.5) equations (4.3) become linear

vp̄p̄ − (ih̄′(z̄2) + 1)vpp̄ + ivp2̄ = 0

vpp + (ih′(z2) − 1)vpp̄ − ivp̄2 = 0
(4.7)

2vpp̄ − v22̄ − (
ih̄′(z̄2) + 1

)
vpp + (ih′(z2) − 1)vp̄p̄

+ [h′(z2)h̄′(z̄2) − i(h′(z2) − h̄′(z̄2))]vpp̄ = 0.

This system has no nontrivial differential compatibility conditions since the equations (vp2̄)2 =
(v22̄)p, (vp̄2)2̄ = (v22̄)p̄ and (vp2̄)p̄2 = (vp̄2)2̄p are satisfied identically.

With the choice (4.6) equations (4.3) are still non-linear

vpvp̄p̄ − iv2̄vpp̄ − vp̄(vpp̄ − ivp2̄) = 0

vp̄vpp + iv2vpp̄ − vp(vpp̄ + ivp̄2) = 0
(4.8)

(v2v2̄ + iv2̄vp − iv2vp̄ + 2vpvp̄)vpp̄

−(
v2

p̄ + ivp̄v2̄

)
vpp − (

v2
p − ivpv2

)
vp̄p̄ − vpvp̄v22̄ = 0

again with no nontrivial differential compatibility conditions.

Theorem 1. Solutions of the over-determined system (4.8) are functionally invariant, i.e.
if v is a solution to (4.8), then f (v) is also a solution to (4.8) whenever f is an arbitrary
function ∈ C2.

The proof follows from a substitution of f (v) instead of v in equations (4.8).
There is a particular class of solutions of the system (4.8) satisfying a linear over-

determined system of six equations

vpp̄ = avp + āvp̄ vpp = (ā + ib̄)vp − iāv2

vp̄p̄ = (a − ib)vp̄ + iav2̄ vp2̄ = bvp − iāvp̄ + āv2̄

vp̄2 = b̄vp̄ + iavp + av2 v22̄ = (a + ib)vp + bv2 + (ā − ib̄)vp̄ + b̄v2̄

(4.9)

where a and b are arbitrary complex constants. Here the first three of these equations generate
the last three equations as their differential compatibility conditions.
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The system (4.9) also has no nontrivial differential compatibility conditions, i.e. equations
(vpp)p̄ = (vpp̄)p, (vp2̄)2 = (v22̄)p and their complex conjugates are identically satisfied. The
substitution of the second derivatives from (4.9) to (4.8) identically satisfies the latter equations.

The general solution of the system (4.9) is obtained in the form

v =
n∑

j=1

Cj exp (αjp + ᾱj p̄ + βjz
2 + β̄j z̄

2) (4.10)

where the sum over integer j may contain a finite or infinite number of terms, Cj are arbitrary
real constants and αj and βj are determined by the equations

|αj |2 = aαj + āᾱj (4.11)

βj = i
α2

j − (ā + ib̄)αj

ā
(4.12)

together with the complex conjugate to (4.12). The first equation (4.11) is easily solved in
polar coordinates a = r eiθ , ā = r e−iθ , α = χ eiµ, ᾱ = χ e−iµ in the form

χ = 2r cos (θ + µ) (4.13)

where µ remains a free parameter.
Substituting for v in (4.4) any solution of the form (4.10) satisfying (4.13) and (4.12)

we obtain explicitly an ultra-hyperbolic ‘heavenly’ [1] metric. Since the generic solution of
the form (4.10) obviously depends on four independent variables and hence is non-invariant,
the resulting metric has no Killing vectors. The justification for this statement is given in
section 7 where we examine the Killing equations for (4.4).

Though we have not found the general solution of the non-linear system (4.8), we
essentially enlarge the class of its solutions using the property of functional invariance from
theorem 1. Due to this property any smooth function of the solution (4.10) is again a solution
of (4.8) though not of the system (4.9) since the latter system does not possess the above
mentioned property. These more general solutions also can be used in the formula (4.4) giving
explicitly more classes of four-dimensional ultra-hyperbolic heavenly metrics admitting no
Killing vectors.

To simplify the solution of the linear system (4.7), we will restrict ourselves to the linear
function h(z2): h = νz2, h̄ = ν̄z̄2 where ν is an arbitrary constant, so that we obtain the linear
system with constant coefficients

vp̄p̄ − (iν̄ + 1)vpp̄ + ivp2̄ = 0

vpp + (iν − 1)vpp̄ − ivp̄2 = 0 (4.14)

[2 + |ν|2 − i(ν − ν̄)]vpp̄ − (iν̄ + 1)vpp + (iν − 1)vp̄p̄ − v22̄ = 0.

We note that the particular solution (4.10) of the system (4.8) satisfying (4.9) turns out
to be also a particular solution of the system (4.14) with the additional constraint on the
parameters in (4.9)

ā = −a b = (ν̄ − i)a (4.15)

where the second equation is just the relation between parameters of the two systems. The
constraints (4.13) and (4.12) on the parameters in the solution (4.10) then take the form
(θ = π/2)

χ = −2r sin µ β = −i
α2

a
+ ν.
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It is easy to find a general solution of the linear system (4.14) with constant coefficients
in the form similar to (4.10)

v =
n∑

j=1

Cj exp (αjp + ᾱj p̄ + βjz
2 + β̄j z̄

2) (4.16)

where the sum over integer j may again contain a finite or infinite number of terms, Cj are
arbitrary real constants and βj are expressed through αj by the relation

βj =
(

ν + i − i
αj

ᾱj

)
αj (4.17)

and its complex conjugate.
The substitution of any solution of the form (4.16) with (4.17) for v in the formula (4.4)

gives us explicitly another class of ultra-hyperbolic heavenly metrics. The solution (4.16)
depends on four variables in the generic case, when the number of terms in the sum (4.16) is
not less than four, and hence the corresponding metric has no Killing vectors. We shall prove
this in section 7 by an examination of the Killing equations.

5. Symmetries and recursions of the second heavenly equation of Plebañski

Let θ = θ(w, z, x, y) be a holomorphic complex-valued function of four complex variables
in some local coordinate system on a complex four-dimensional manifold M. The heavenly
metric of Plebañski [1] locally defined on M is defined by (we skip here an overall factor 2)

ds2 = dw dx + dz dy − θxx dz2 − θyy dw2 + 2θxy dw dz (5.1)

where subscripts denote partial derivatives with respect to corresponding variables. This
metric is governed by the second heavenly equation [1]

θxw + θyz + θxxθyy − θ2
xy = 0 (5.2)

for the potential θ in the metric (5.1).

5.1. Recursion relations from the divergence form of the determining equation
for symmetries

The determining equation for symmetries of the heavenly equation (5.2) has the form

ϕxw + ϕyz + θyyϕxx + θxxϕyy − 2θxyϕxy = 0 (5.3)

which is a linearization of (5.2). It can also be written as �θ ϕ = 0 with the operator �θ

defined by

�θ = DxDw + DyDz + θyyD
2
x + θxxD

2
y − 2θxyDxDy (5.4)

where Dx,Dw,Dy,Dz denote total derivatives with respect to corresponding variables. We
note that the determining equation (5.3) can be presented in the form of total divergence, i.e.
differential conservation law

Dx(ϕw + θyyϕx − θxyϕy) + Dy(ϕz + θxxϕy − θxyϕx) = 0 (5.5)

so that there locally exists a potential ψ such that

ψy = ϕw + θyyϕx − θxyϕy ψx = −(ϕz − θxyϕx + θxxϕy) (5.6)

and differential compatibility conditions (ψy)x = (ψx)y for the system (5.6) coincide with the
determining equation for symmetries (5.3).



Partner symmetries and non-invariant solutions 7535

We introduce linear differential operators

Ly = Dw + θyyDx − θxyDy Lx = −(Dz − θxyDx + θxxDy) (5.7)

so that the operator (5.4) takes the form

�θ = DxLy − DyLx = LyDx − LxDy (5.8)

and the relations (5.6) become

ψy = Lyϕ ψx = Lxϕ. (5.9)

The commutator of the two operators has the form

[Lx,Ly] = (
θxw + θyz + θxxθyy − θ2

xy

)
y
Dx − (

θxw + θyz + θxxθyy − θ2
xy

)
x
Dy

and hence [Lx,Ly] = 0 on the solution manifold of the second heavenly equation (5.2).
Alternatively, vanishing of the commutator of Lx and Ly reproduces the equation

θxw + θyz + θxxθyy − θ2
xy = Cw(w, z)

where C(w, z) is an arbitrary function of w and z which after redefining θ to θ + xC(w, z),
coincides with the original equation (5.2). Note that this redefinition does not change
equations (5.3)–(5.9).

Let ϕ be a symmetry of (5.2) so that it satisfies the determining equation (5.3) �θ ϕ = 0
and ψ be a corresponding potential for ϕ related to it by formulae (5.9). Then a simple
calculation shows that ψ is also a symmetry, i.e. it satisfies the same equation (5.3)

�θψ = Lyψx − Lxψy = −[Lx,Ly]ϕ = 0

where we have substituted ψx and ψy from (5.9) and used the commutativity of Lx and Ly

on the solution manifold of (5.2). Therefore, the potential ψ for any symmetry ϕ is also a
symmetry and hence equations (5.9) are recursion relations for partner symmetries of (5.2).

The Lax pair of Mason and Newman for equation (5.2) [12, 13] can be expressed through
Lx and Ly as

L0 = Dy − λLy L1 = Dx − λLx (5.10)

so that [L0, L1] = λ2[Ly,Lx] and the vanishing of the commutator [L0, L1] reproduces
equation (5.2) up to redefinition of C(w, z), the same as for [Lx,Ly] = 0.

Recursion relations (5.9) for symmetries can be expressed in terms of non-local recursion
operator R defined by

ψ = Rϕ = D−1
y Lyϕ ψ = Rϕ = D−1

x Lxϕ. (5.11)

5.2. Point symmetries of the second heavenly equation

Here again we will avoid operating explicitly with non-local symmetries and use instead
equations (5.6) only with the point partner symmetries ϕ and ψ . Then these equations are
equivalent to an invariance condition for solutions of the second heavenly equation with
respect to non-local symmetry which is a linear combination of ψ and the non-local symmetry
generated from ϕ by the recursion operator. Such solutions will still be non-invariant in the
usual sense.

Though here we use only an obvious translational symmetry for this purpose, it is
convenient for future analysis in the same framework to present explicitly basis generators of
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Table 1. Commutators of point symmetries of the second heavenly equation.

X1 X2 X3 X4 Ya Zb Gc Hd

X1 0 −Yw 0 X1 −Haz −Ybz Zcz 0
X2 Yw 0 0 X2 −2Hzaz −Y2b̂z+b 2Zĉz 0

X3 0 0 0 0 −H(waw)∧s Zb̂w
Gĉw Hd̂w

X4 −X1 −X2 0 0 2Ha∧s −Zb 0 −3Hd

Ye Hez 2Hzez H(wew)∧s −2He∧s 0 He∧b H(e∧c)∧s 0
Zf Yfz Y2f̂ z+f −Zf̂ w

Zf −Ha∧f −H(f ∧b)∧s Zc∧f 0

Gg −Zgz −2Zĝz −Gĝw 0 −H(a∧g)∧s −Zg∧b Gc∧g Hd∧g

Hh 0 0 −Hĥw
3Hh 0 0 −Hh∧c 0

the complete symmetry algebra of point symmetries for the second heavenly equation (5.2).
Symmetry generators of its one-parameter subgroups have the form

X1 = ∂/∂x X2 = 2z∂/∂x − xy∂/∂θ X3 = y∂/∂y + w∂/∂w + θ∂/∂θ

X4 = x∂/∂x + y∂/∂y + 3θ∂/∂θ Ya = (yaw − xaz)∂/∂θ Hd = ∂/∂θ

Zb = bw∂/∂x + bz∂/∂y + (1/2)(x2bzz + y2bww − 2xybzw)∂/∂θ

Gc = (xczw − ycww)∂/∂x + (xczz − yczw)∂/∂y + cw∂/∂z − cz∂/∂w

+ (1/6)(x3czzz − 3x2yczzw + 3xy2czww − y3cwww)∂/∂θ

(5.12)

where a(z,w), b(z,w), c(z,w) and d(z,w) are arbitrary functions of z,w. Since some
of the generators contain arbitrary functions, the total symmetry group is an infinite Lie
(pseudo)group.

Of course, some of these symmetries are quite obvious, such as translations in all
independent variables and combined dilatations

y ′ = λy w′ = λw θ ′ = λθ and x ′ = λx y ′ = λy θ ′ = λ3θ

generated by X3 and X4 respectively. From symmetry considerations one may wonder where
is the generator of the uniform dilatations in x, z, θ : X̃3 = x∂/∂x + z∂/∂z + θ∂/∂θ? The
answer is that for a particular choice c = zw, the generator Gzw reduces to another generator
of dilatations

Gzw = x∂/∂x − y∂/∂y + z∂/∂z − w∂/∂w

so that X̃3 = Gzw + X3. Seemingly missing generators of translations in y, z,w can also be
found in (5.12) for certain special choices of b and c as

Zz = ∂/∂y Gw = ∂/∂z G−z = ∂/∂w.

We also have the generator of simultaneous rotations in the (x, y) and (w, z) complex planes

Gc = x∂/∂y − y∂/∂x + w∂/∂z − z∂/∂w

which is obtained from Gc by the choice of c = (z2 + w2)/2.
In the next section we shall use only one of the simplest translational symmetries from

(5.12), namely Gz = −∂/∂w with the characteristic θw, and still obtain very non-trivial results.
For completeness we present a table of commutators of the generators (5.12) where the

commutator [Xi,Xj ] stands at the intersection of the ith row and j th column. It is convenient to
introduce for this table the following shorthand notation for a skew-symmetric differentiation
of a pair of functions a(z,w) and b(z,w): a ∧ b = azbw − bzaw and s = xw + yz, so that
xaz − yaw = a ∧ s and x(f ∧ b)z − y(f ∧ b)w = (f ∧ b) ∧ s. We also denote ĉz = zcz − c

and ĉw = wcw − c. In table 1 a, b, c, d, e, f, g, h are arbitrary functions of z,w.
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All contact symmetries of the second heavenly equation (5.2) coincide with its prolonged
point symmetries.

Symmetries of the second heavenly equation were also studied in [9, 14].

5.3. Legendre transformation and heavenly metric

Our final goal is to end up with linear equations. This will be achieved in the next section by
applying the partial Legendre transformation

u = θ − wθw − yθy θw = t θy = r w = −ut y = −ur (5.13)

to second heavenly equation (5.2) together with equations (5.6) for some choices of local
symmetries ϕ and ψ . The existence condition for Legendre transformation (5.13) has the
form

� = utturr − u2
rt �= 0. (5.14)

The Legendre transform of (5.2) is

utt (uxx + urz) + uxt (urr − uxt ) − urt (urx + utz) = 0. (5.15)

The Legendre transformation (5.13) of the metric (5.1) results in

ds2 = [utt (utt dt + utr dr + utx dx + utz dz) + (utturx − utrutx) dz]2

utt

(
utturr − u2

tr

)
−

(
uttuxx − u2

tx

)
utt

dz2 − (utt dt + utr dr + utx dx + utz dz) dx

− (urt dt + urr dr + urx dx + urz dz) dz (5.16)

with the potential u satisfying equation (5.15).

6. Example: use of translational symmetries

6.1. Case of equal symmetries

First we consider the case when the two partner symmetries are equal to each other ϕ = ψ

and we choose ϕ to be equal to the characteristic of the translational symmetry ϕ = θw. Then
equations (5.6) take the form

−θyw + θww + θyyθwx − θxyθwy = 0 (6.1)

θxw + θwz + θxxθwy − θxyθwx = 0 (6.2)

so that together with (5.2) we obtain a system of three equations.
After applying Legendre transformation (5.13), equation (6.1) is linearized in the form

urt + urr − uxt = 0 (6.3)

and with the aid of equation (6.3) equations (6.2), (5.2) become respectively

urt (uxx + urz) − urr(urx + uxt + utz) = 0 (6.4)

−utt (uxx + urz) + urt (urx + uxt + utz) = 0. (6.5)

Solving the system (6.4), (6.5) algebraically we obtain two linear equations

uxx + urz = 0 (6.6)

urx + uxt + utz = 0 (6.7)
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since the determinant of this system is non-zero due to the condition � �= 0 with � defined
in (5.14).

The system of the three linear equations (6.3), (6.6) and (6.7) corresponds to the original
second heavenly equation (5.2) plus two differential constraints (6.1) and (6.2).

The solution of this linear system has the form

u =
n∑

j=1

Cj exp (αj t + βj r + γjx + δj z) (6.8)

where Cj are arbitrary constants and the parameters satisfy the relations

αj = β2
j

γj − βj

δj = −γ 2
j

βj

. (6.9)

Substitution of this solution into the Legendre transform (5.16) of the heavenly metric
(5.1) gives an explicit form of such a metric. The solution (6.8) depends on four variables in
the generic case, when the number of terms in the sum (6.8) is greater than three, and hence
the corresponding metric has no Killing vectors.

6.2. Solutions invariant with respect to higher symmetry

Here we consider the case when ϕ is the translational symmetry ϕ = θw and its partner
symmetry characteristic ψ is equal to zero ψ = 0. This means the invariance of the solution
for θ with respect to the nonlocal higher symmetry ψ generated from ϕ = θw by the recursion
relations (5.6)

Lyϕ = θww + θyyθwx − θxyθwy = 0 (6.10)

−Lxϕ = θwz − θxyθwx + θxxθwy = 0 (6.11)

so that we have again the system of three equations (6.10), (6.11) and (5.2).
Next we perform the partial Legendre transformation (5.13) of this system. The Legendre

transform of (6.10) is

urr − utx = 0. (6.12)

With the use of (6.12) the Legendre transforms of (6.11) and (5.2) become respectively

urr(urx + utz) − utr (urz + uxx) = 0 (6.13)

urt (urx + utz) − utt (urz + uxx) = 0. (6.14)

Due to the condition � �= 0 in (5.14) equations (6.13) and (6.14) become

urx + utz = 0 (6.15)

urz + uxx = 0 (6.16)

so that we end up with the system of linear equations (6.12), (6.15) and (6.16).
The solution of this linear system has again the form (6.8) but with the modified relations

between parameters

αj = β2
j

γj

δj = −γ 2
j

βj

. (6.17)

The corresponding explicit form of the heavenly metric is obtained by a substitution of
solution (6.8) for u into formula (5.16). This metric generically has no Killing vectors for the
same reason as mentioned above.
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7. Relationship between Killing vectors and symmetries of the potential

Here we shall give proof of the non-existence of any Killing vectors for our metrics.
Our emphasis will be on the existence problem. Thus we shall make use of the fact

that a vector is an invariant object and the existence of a vector field in one frame implies
its existence in any other frame. We have started out with the simple looking Kähler metric
with the complicated CMA equation as the condition for Ricci-flatness and after a Legendre
transformation arrived at a complicated form of the metric with linear field equations which
are easily solved. With the Killing vector there is a similar situation. Killing’s equations are
simple in the Kähler form of the metric and we obtain a linear first-order PDE, see (7.5) below,
which encodes all the information in the Killing equations. On solutions of the field equations
the Legendre transformation induces point transformations between the coordinates entering
into the metric. This is a linear homogeneous transformation between the components of the
Killing vector and its non-existence in one frame will imply its non-existence in any other
frame.

7.1. Analysis of the Killing equations for the Kähler metric

Thus we consider first the Kähler metric (2.4) and let

�v = ξk(z, z̄)
∂

∂zk
+ ξ k̄(z, z̄)

∂

∂z̄k
(7.1)

be the Killing vector for (2.4) where z = (z1, z2) and z̄ = (z̄1, z̄2) and summation over
dummy indices ranges over two values for both barred and unbarred indices. The reality
condition for �v implies ξ k̄ = ξ̄ k .

The Killing equations for the metric (2.4) fall into two sets

uik̄ξ
k̄
j = 0 ukj̄ ξ

k
ī

= 0 (7.2)

and

(ξ kukj̄ )i + (ξ k̄uk̄i)j̄ = 0 (7.3)

where subscripts denote partial derivatives. The determinant of the linear equations (7.2) is
nonzero due to the CMA equation (2.3)

det(uik̄) = u11̄u22̄ − u21̄u12̄ = ±1

and hence these equations have only vanishing solutions ξ k̄
j = 0, ξ k

ī
= 0, so that

ξ i = ξ i(z) ξ ī = ξ ī(z̄). (7.4)

The remaining Killing equations become

(ξ kuk + ξ k̄uk̄)ij̄ = 0

with the solution

ukξ
k(z) + uk̄ξ

k̄(z̄) = h(z) + h̄(z̄) (7.5)

where h is an arbitrary biholomorphic function.
Hence the Killing equations are equivalent to the linear equation (7.5) for ξk(z), ξ k̄(z̄)

which should be satisfied for a given solution u(z, z̄) of the CMA if a Killing vector for the
corresponding metric (2.4) exists.

We note that if ξk, ξ k̄ are chosen as coefficients of a generator of point symmetries (3.7)
with C1 = 0, then (7.5) coincides with the invariance condition η̂ = 0 for solutions of
the CMA, where η̂ is the symmetry characteristic (3.8). More generally (7.5) determines
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conditionally invariant solutions of the CMA [15], if conditional symmetries exist. Thus, any
such symmetry in a solution of the CMA implies the existence of a Killing vector for the
Kähler metric (2.4).

The Legendre transformation (4.1) induces an invertible point coordinate transformation

p = u1(z, z̄) p̄ = u1̄(z, z̄) z1 = −vp(p, p̄, z2, z̄2) z̄1 = −vp̄(p, p̄, z2, z̄2)

(7.6)

on solutions u(z, z̄) and v(p, p̄, z2, z̄2) of the HCMA (2.7) and its Legendre transform (4.2)
respectively and z2, z̄2 are not transformed. Under this transformation the condition (7.5),
equivalent to the Killing equations, results in

pξ 1(−vp, z2) + v2ξ
2(−vp, z2) + p̄ξ 1̄(−vp̄, z̄2) + v2̄ξ

2̄(−vp̄, z̄2)

= h(−vp, z2) + h̄(−vp̄, z̄2) (7.7)

We should account also for a transformation of components of the Killing vectors induced
by the transformation (7.6). Let

�v = ηp ∂

∂p
+ ηp̄ ∂

∂p̄
+ η2 ∂

∂z2
+ η2̄ ∂

∂z̄2
(7.8)

be the Killing vector (7.1) in the frame transformed by (7.6). The transformation law for the
components of the Killing vector is given by

ξ 1 = −(ηpvpp + ηp̄vpp̄ + η2vp2 + η2̄vp2̄) ξ 2 = η2

ξ 1̄ = −(ηpvp̄p + ηp̄vp̄p̄ + η2vp̄2 + η2̄vp̄2̄) ξ 2̄ = η2̄
(7.9)

where the arguments of ηp, η2, ηp̄, η2̄ and second derivatives of v on the right hand sides of
(7.9) consist of p, p̄, z2, z̄2. Hence the existence of �v defined by (7.1) is equivalent to that of
�v defined by (7.8). Given some solution v of (4.2), a Killing vector for the transformed metric
(4.4) exists only if one can satisfy (7.7).

We need to check if this equation can be satisfied by our solutions (4.10) and (4.16). Both
of them have the form

v =
n∑

j=1

Cj e�j (7.10)

where Cj are arbitrary real constants,

�j = αjp + ᾱj p̄ + βjz
2 + β̄j z̄

2 (7.11)

and the parameters αj , βj satisfy conditions (4.11), (4.12) for (4.10) and (4.17) for (4.16).
Let n � 4 in (7.10) and �1,�2,�3,�4 be linearly independent, i.e. the transformation

(7.11) from p, p̄, z2, z̄2 to �1,�2,�3,�4 is invertible, provided that α1α2α3α4 �= 0 and the
determinant of the matrix of coefficients of (7.11) is nonzero∣∣∣∣∣∣∣∣

1 e−2iµ1 e2iµ1 e−4iµ1

1 e−2iµ2 e2iµ2 e−4iµ2

1 e−2iµ3 e2iµ3 e−4iµ3

1 e−2iµ4 e2iµ4 e−4iµ4

∣∣∣∣∣∣∣∣ �= 0 (7.12)

where µj are the phases of αj . The same condition holds for both solutions (4.10) and (4.16).
Then p, p̄, z2, z̄2 can be expressed through �1,�2,�3,�4 and the same for �5, . . . , �n,
so that �j for j = 1, 2, 3, 4 can be chosen as new independent variables in (7.7) and
equation (7.7) takes the form

G(�1,�2,�3,�4) = 0. (7.13)
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Obviously equation (7.7) cannot be satisfied identically for any solution v of (4.2) just
by a suitable choice of functions ξ i, ξ ī , h, h̄ because of p, p̄, v2, v2̄ explicitly entering its
coefficients. A similar remark applies also to the original equation (7.5) where generically the
coefficients ui, uī depend on z and z̄ together while the unknowns ξ i, ξ ī and h, h̄ depend only
on z or z̄ separately. Hence (7.5) and (7.7) should be considered as the equations determining
particular solutions of the CMA or (4.2) respectively for any choice of ξ i, ξ ī , h, h̄ and this
choice is constrained by the compatibility conditions of (7.5) with the CMA and (7.7) with
(4.2).

In our case solutions of (4.2) are already determined in (7.10) up to arbitrary constants
by solving second-order linear equations together with the Legendre-transformed HCMA
and hence, having no functional arbitrariness, they cannot satisfy in addition the first-order
equation (7.7). Thus for any choice of ξ i, ξ ī , h, h̄ (7.7) is not an identity but an equation of the
form (7.13). This implies a dependence of the independent variables which is a contradiction
that proves the nonexistence of the Killing vectors for the metric (4.4) where the potential v is
determined by (4.10) and (4.16) with n � 4 and condition (7.12) is satisfied.

If n � 3 then this reasoning obviously does not work and Killing vectors may exist.
Thus we have proved the following theorem.

Theorem 2. Metric (4.4) with v defined either by (4.10) with the conditions (4.11), (4.12),
or by (4.16) with conditions (4.17) provided that n � 4, α1α2α3α4 �= 0 and satisfying the
non-degeneracy condition (7.12), admits no Killing vectors.

7.2. Analysis of the Killing equations for the second heavenly metric

Now we shall perform a similar analysis for the heavenly metric (5.1) governed by the potential
satisfying the second heavenly equation (5.2). Let

�� = ξx(x, y, z,w)
∂

∂x
+ ξy(x, y, z,w)

∂

∂y
+ ξz(x, y, z,w)

∂

∂z
+ ξw(x, y, z,w)

∂

∂w
(7.14)

denote the Killing vector for the metric (5.1). The Killing equations for this metric fall into
three sets

ξw
x = 0 ξz

y = 0 ξz
x + ξw

y = 0 ξy
x + ξw

z − 2θxxξ
z
x = 0

ξx
x + ξw

w + 2θxyξ
z
x = 0 ξy

y + ξz
z + 2θxyξ

w
y = 0 ξx

y + ξz
w − 2θyyξ

w
y = 0

(7.15)

ξxθxxx + ξyθyxx + ξzθzxx + ξwθwxx = ξy
z − 2θxxξ

z
z + 2θxyξ

w
z

ξxθxyy + ξyθyyy + ξzθzyy + ξwθwyy = ξx
w + 2θxyξ

z
w − 2θyyξ

w
w

(7.16)

2(ξxθxxy + ξyθyxy + ξzθzxy + ξwθwxy) + 2θxy

(
ξz
z + ξw

w

)
− 2θxxξ

z
w − 2θyyξ

w
z + ξy

w + ξx
z = 0 (7.17)

of seven, two and one equations respectively. The first subsystem (7.15) is easily integrated
to give

ξx = −2aθy − xdw − ybw − e ξy = 2aθx − xdz − ybz + c

ξz = ax + b ξw = −ay + d
(7.18)

where a is an arbitrary constant and b, c, d, e are arbitrary functions of z,w only. The
two equations (7.16) are integrated with respect to x and y respectively and the results are
substituted into (7.17) which determines y- and x-dependences of the integration ‘constants’.
Then we solve the two remaining equations (7.16) algebraically with respect to (ξxθx +
ξyθy + ξzθz + ξwθw)x and (ξxθx + ξyθy + ξzθz + ξwθw)y and then equate their cross-derivatives
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in y and x which gives additional constraints on the right-hand sides of these equations. In
particular, we obtain that

b = qw + kz d = −qz + kw (7.19)

where k is an arbitrary constant and q is an arbitrary function of z,w.
For the purpose of further integration we present the second heavenly equation (5.2) in a

divergence form

(θyθxx − θxθyx + 2θz)y = (θyθxy − θxθyy − 2θw)x (7.20)

so that we can locally define the potential V

Vx = θyθxx − θxθyx + 2θz Vy = θyθxy − θxθyy − 2θw (7.21)

up to an arbitrary term depending only on z,w. Then we can further integrate the two equations
(7.16), whose left-hand sides after the first integration were (ξxθx + ξyθy + ξzθz + ξwθw)x and
(ξxθx + ξyθy + ξzθz + ξwθw)y , with respect to x and y which results in

ξxθx + ξyθy + ξzθz + ξwθw ≡ [x(qzw − k) − yqww − e]θx

+ [xqzz − y(qzw + k) + c]θy + (ax + kz + qw)θz + (kw − ay − qz)θw

= 2(aV − kθ) + 1
6 (x3qzzz − 3x2yqzzw + 3xy2qzww − y3qwww)

+ 1
2 [x2cz + xy(ez − cw) − y2ew] + xρ + yσ + κ (7.22)

where we have used expressions (7.18) for ξx, ξy, ξ z, ξw in the left-hand side of this equation
and ρ, σ, κ are new arbitrary functions of z,w. Hence the Killing equations (7.15)–(7.17)
are equivalent to the linear first-order PDE (7.22) which should be identically satisfied for
a given solution of the heavenly equation (5.2) with a suitable choice of arbitrary functions
q, c, e, ρ, σ, κ of the variables z,w, arbitrary constants a, k and the integration ‘constant’ for
the potential V in (7.21) depending on z,w. If (7.22) is satisfied then the components of the
Killing vector are given by (7.18) together with (7.19).

The Legendre transformation (5.13) induces an invertible point coordinate transformation

r = θy(x, y, z,w) t = θw(x, y, z,w) y = −ur(x, r, z, t) w = −ut (x, r, z, t) (7.23)

on solutions θ(x, y, z,w) and u(x, r, z, t) of the second heavenly equation (5.2) and its
Legendre transform (5.15) respectively and x, z are not transformed. Let

�� = ηx ∂

∂x
+ ηr ∂

∂r
+ ηz ∂

∂z
+ ηt ∂

∂t
(7.24)

be a Killing vector (7.14) in the frame transformed by (7.23). The components of the Killing
vector are accordingly transformed by

ξy = −(ηxurx + ηrurr + ηzurz + ηturt ) ξ x = ηx

ξw = −(ηxutx + ηrutr + ηzutz + ηtutt ) ξ z = ηz
(7.25)

where the arguments of ηx, ηr , ηz, ηt and second derivatives of u on the right-hand sides of
(7.25) consist of x, r, z, t .

The Legendre transformation of equation (7.22) results in

[x(qzw − k) + urqww − e]ux + r[xqzz + ur(qzw − k) + c]

+ (ax + kz + qw)uz + t (−3kut + aur − qz)

= 2(aP − ku) + (1/6)
(
x3qzzz + 3x2urqzzw + 3xu2

r qzww + u3
r qwww

)
+ (1/2)

[
x2cz − xur(ez − cw) − u2

r ew

]
+ xρ − urσ + κ (7.26)
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where u is a solution of the Legendre-transformed second heavenly equation in (5.15),
w = −ut (x, r, z, t) should be subsituted in q, c, e, their derivatives, ρ, σ and κ while the
transformed potential

P(x, r, z, t) = V (x,−ur(x, r, z, t), z,−ut (x, r, z, t))

is determined by the transformed equations (7.21) defining the potential V

uttPx − utxPt = 2t (urxutt − urtutx) + r
(
uttuxx − u2

tx

)
+ 2uzutt

uttPr − urtPt = 2t
(
urrutt − u2

rt

)
+ r(urxutt − urtutx) − uxutt

(7.27)

with the only differential compatibility condition coinciding with (5.15).
We need to check if equation (7.26) can be satisfied for our solutions (6.8). They have

again the form (7.10) where

�j = αj t + βj r + γjx + δj z (7.28)

Cj are arbitrary complex constants and the parameters satisfy (6.9) or (6.17).
Let n � 4 in (7.10) and �1,�2,�3,�4 be linearly independent, i.e. the transformation

(7.28) from t, r, x, z to �1,�2,�3,�4 is invertible, provided that β1β2β3β4 �= 0 and the
determinant of the matrix of coefficients of (7.28) is nonzero. For the solution (6.8) with the
parameters satisfying (6.9) this condition is∣∣∣∣∣∣∣∣∣∣

β1/(γ1 − β1) 1 γ1/β1 −γ 2
1

/
β2

1

β2/(γ2 − β2) 1 γ2/β2 −γ 2
2

/
β2

2

β3/(γ3 − β3) 1 γ3/β3 −γ 2
3

/
β2

3

β4/(γ4 − β4) 1 γ4/β4 −γ 2
4

/
β2

4

∣∣∣∣∣∣∣∣∣∣
�= 0. (7.29)

For the solution (6.8) with the parameters satisfying (6.17) the corresponding invertibility
condition has the form∣∣∣∣∣∣∣∣∣∣

β1/γ1 1 γ1/β1 −γ 2
1

/
β2

1

β2/γ2 1 γ2/β2 −γ 2
2

/
β2

2

β3/γ3 1 γ3/β3 −γ 2
3

/
β2

3

β4/γ4 1 γ4/β4 −γ 2
4

/
β2

4

∣∣∣∣∣∣∣∣∣∣
�= 0. (7.30)

Then t, r, x, z can be expressed through �1,�2,�3,�4 and the same for �5, . . . , �n, so that
�j for j = 1, 2, 3, 4 can be chosen as new independent variables in (7.26) and equation (7.26)
takes the form (7.13).

In our case solutions of (5.15) are already determined in (6.8) up to arbitrary constants
by solving second-order linear equations together with the Legendre-transformed second
heavenly equation and hence, having no functional arbitrariness, they cannot satisfy in addition
the first-order equation (7.26). Thus for any choice of functions q, c, e, ρ, σ, κ , depending
on z,w = −ut , arbitrary constants a, k and the potential P(x, r, z, t) satisfying (7.27),
equation (7.26) is not an identity but an equation of the form (7.13). This implies a dependence
of the independent variables which is a contradiction that proves the nonexistence of the
Killing vectors for the metric (5.16) where the potential u is determined by (6.8) with n � 4
and conditions (7.29) or (7.30) are satisfied.

If n � 3 the above reasoning obviously does not work and Killing vectors may exist.
Thus we have proved the following theorem.

Theorem 3. Metric (5.16) with u defined by (6.8) with the conditions (6.9) or (6.17), n � 4,

β1β2β3β4 �= 0 and satisfying the non-degeneracy conditions (7.29) or (7.30) respectively
admits no Killing vectors.
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8. Conclusions and discussion

We have shown that our method of partner symmetries, worked out initially for the elliptic
complex Monge–Ampère equation, can be extended to the hyperbolic complex Monge–
Ampère equation and the second heavenly equation of Plebañski. This method enables
us to construct second-order differential constraints which select certain particular sets of
solutions invariant with respect to non-local symmetries and hence non-invariant in the usual
sense. The advantage of the method is that we deal only with local point symmetries, which
build up non-local symmetries, and do not need to work with non-local symmetries explicitly.
We found some simple choices of these local partner symmetries for which the Legendre
transformation converts the original heavenly equation together with differential constraints
to linear equations. We have found their generically non-invariant solutions, dependent on all
four variables, and hence new classes of four-dimensional heavenly metrics without Killing
vectors.

The idea of obtaining non-invariant solutions as invariant solutions with respect to non-
local symmetry for the hierarchy associated with the second heavenly equation was also
suggested by Dunajski and Mason. However, their ‘hidden symmetries’ constitute a very
special class of symmetries which can be generated from local symmetries by repeated
applications of the recursion operator and hence have a characteristic property that they can
be mapped back to a certain local symmetry by some power of the inverse recursion operator.
As a consequence they have at least six differential second-order constraints implied by the
hidden symmetries. A class of non-local symmetries constructed from partner symmetries is
much more extensive because it consists of symmetries which are linear combinations of local
symmetries and those generated from local symmetries by the recursion operators, so that they
cannot be mapped to a local symmetry by the action of recursion operators. This additional
freedom in symmetries results in wider classes of solutions of the heavenly equations since
the number of additional differential constraints implied by partner symmetries is typically
three, which is less than six in the case of hidden symmetries.

The crucial point of our method is the possibility of linearizing the field equation together
with constraints by the Legendre transformation. We have found that this is possible for some
simple choices of partner symmetries. An important problem, with which we are occupied,
is to work out a criterion which would choose such symmetries for which the linearization is
possible.

Another project, that we are working on, is to construct general classes of equations for
which our method of partner symmetries could be applied. Characteristic features of such
equations should include the divergence structure of the determining equation for symmetries
and the condition that a potential for any symmetry should again be a symmetry. We plan to
return to this problem soon in a future publication.
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